
Outline

• Part 1: Motivation

• Part 2: Probabilistic Databases

• Part 3: Weighted Model Counting

• Part 4: Lifted Inference for WFOMC

• Part 5: Completeness of Lifted Inference

• Part 6: Query Compilation

• Part 7: Symmetric Lifted Inference Complexity

• Part 8: Open-World Probabilistic Databases

• Part 9: Discussion & Conclusions

 Informal:
 Exploit symmetries, Reason at first-order level, Reason about groups of objects,

 Scalable inference, High-level probabilistic reasoning, etc.

 A formal definition: Domain-lifted inference

Defining Lifted Inference

 Polynomial in #people, #webpages, #cards

 Not polynomial in #predicates, #formulas, #logical variables

 Related to data complexity in databases

Inference runs in time polynomial

in the number of objects in the domain.

[VdB’11, Jaeger’12]

 Informal:
 Exploit symmetries, Reason at first-order level, Reason about groups of objects,

 Scalable inference, High-level probabilistic reasoning, etc. [Poole’03, etc.]

 A formal definition: Domain-lifted inference

Defining Lifted Inference

[VdB’11, Jaeger’12]

 Informal:
 Exploit symmetries, Reason at first-order level, Reason about groups of objects,

 Scalable inference, High-level probabilistic reasoning, etc. [Poole’03, etc.]

 A formal definition: Domain-lifted inference

Defining Lifted Inference

Lifted inference = ∃Query Plan = ∃FO Compilation

 Alternative in this tutorial:

[VdB’11, Jaeger’12]

Asymmetric WFOMC Rules
Preprocess Q (omitted from this talk; see [Suciu’11]),

then apply these rules (some have preconditions)

WMC(¬Δ) = Z-WMC(Δ) Negation
Normalization constant Z

(easy to compute)

Asymmetric WFOMC Rules

WMC(Δ1∧Δ2) = WMC(Δ 1) * WMC(Δ 2)

WMC(Δ1∨Δ2) = Z -(Z1-WMC(Δ1))*(Z2-WMC(Δ2))

Preprocess Q (omitted from this talk; see [Suciu’11]),

then apply these rules (some have preconditions)

Independent

join / union

WMC(¬Δ) = Z-WMC(Δ) Negation
Normalization constant Z

(easy to compute)

Asymmetric WFOMC Rules

WMC(Δ1∧Δ2) = WMC(Δ 1) * WMC(Δ 2)

WMC(Δ1∨Δ2) = Z -(Z1-WMC(Δ1))*(Z2-WMC(Δ2))

WMC(∃z Δ) = Z – ΠC∈Domain (ZC–WMC(Δ[C/z])

WMC(∀z Δ) = ΠC∈Domain WMC(Δ[C/z]

Preprocess Q (omitted from this talk; see [Suciu’11]),

then apply these rules (some have preconditions)

Independent

join / union

Independent

project

WMC(¬Δ) = Z-WMC(Δ) Negation
Normalization constant Z

(easy to compute)

Asymmetric WFOMC Rules

WMC(Δ1∧Δ2) = WMC(Δ 1) * WMC(Δ 2)

WMC(Δ1∨Δ2) = Z -(Z1-WMC(Δ1))*(Z2-WMC(Δ2))

WMC(∃z Δ) = Z – ΠC∈Domain (ZC–WMC(Δ[C/z])

WMC(∀z Δ) = ΠC∈Domain WMC(Δ[C/z]

WMC(Δ1∧Δ2) = WMC(Δ1)+WMC(Δ2)-WMC(Δ1∨Δ2)

WMC(Δ1∨Δ2) = WMC(Δ1)+WMC(Δ2)-WMC(Δ1∧Δ2)

Preprocess Q (omitted from this talk; see [Suciu’11]),

then apply these rules (some have preconditions)

Independent

join / union

Independent

project

Inclusion/

exclusion

WMC(¬Δ) = Z-WMC(Δ) Negation
Normalization constant Z

(easy to compute)

Symmetric WFOMC Rules

• Simplification to independent project:

If Δ[C1/x], Δ[C2/x], … are independent

 WMC(∃z Δ) = Z – (ZC1
-WMC(Δ[C1/z])|Domain|

 WMC(∀z Δ) = WMC(Δ[C1/z])|Domain|

[VdB’11]

Symmetric WFOMC Rules

• Simplification to independent project:

If Δ[C1/x], Δ[C2/x], … are independent

 WMC(∃z Δ) = Z – (ZC1
-WMC(Δ[C1/z])|Domain|

 WMC(∀z Δ) = WMC(Δ[C1/z])|Domain|

The workhorse of

Symmetric WFOMC

• A powerful new inference rule: atom counting

Only possible with symmetric weights

Intuition: Remove unary relations

[VdB’11]

• FO-Model Counting: w(R) = w(¬R) = 1

• Apply inference rules backwards (step 4-3-2-1)

WFOMC Inference: Example

4.

• FO-Model Counting: w(R) = w(¬R) = 1

• Apply inference rules backwards (step 4-3-2-1)

Δ = (Stress(Alice) ⇒ Smokes(Alice)) Domain = {Alice}

WFOMC Inference: Example

4.

• FO-Model Counting: w(R) = w(¬R) = 1

• Apply inference rules backwards (step 4-3-2-1)

→ 3 models

Δ = (Stress(Alice) ⇒ Smokes(Alice)) Domain = {Alice}

WFOMC Inference: Example

4.

• FO-Model Counting: w(R) = w(¬R) = 1

• Apply inference rules backwards (step 4-3-2-1)

Δ = (Stress(Alice) ⇒ Smokes(Alice)) Domain = {Alice}

WFOMC Inference: Example

WMC(¬Stress(Alice) ∨ Smokes(Alice))) =

 = Z – WMC(Stress(Alice)) × WMC(¬Smokes(Alice))

 = 4 – 1 × 1 = 3 models

4.

• FO-Model Counting: w(R) = w(¬R) = 1

• Apply inference rules backwards (step 4-3-2-1)

Δ = (Stress(Alice) ⇒ Smokes(Alice)) Domain = {Alice}

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

WFOMC Inference: Example

WMC(¬Stress(Alice) ∨ Smokes(Alice))) =

 = Z – WMC(Stress(Alice)) × WMC(¬Smokes(Alice))

 = 4 – 1 × 1 = 3 models

4.

→ 3n models

• FO-Model Counting: w(R) = w(¬R) = 1

• Apply inference rules backwards (step 4-3-2-1)

Δ = (Stress(Alice) ⇒ Smokes(Alice)) Domain = {Alice}

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

WFOMC Inference: Example

WMC(¬Stress(Alice) ∨ Smokes(Alice))) =

 = Z – WMC(Stress(Alice)) × WMC(¬Smokes(Alice))

 = 4 – 1 × 1 = 3 models

WFOMC Inference: Example

→ 3n models

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

WFOMC Inference: Example

→ 3n models

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

2. Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) D = {n people}

WFOMC Inference: Example

→ 3n models

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

2. Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) D = {n people}

If Female = true? Δ = ∀y, (ParentOf(y) ⇒ MotherOf(y)) → 3n models

WFOMC Inference: Example

→ 3n models

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

2. Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) D = {n people}

If Female = true? Δ = ∀y, (ParentOf(y) ⇒ MotherOf(y)) → 3n models

→ 4n models If Female = false? Δ = true

→ 3n + 4n models

WFOMC Inference: Example

→ 3n models

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

2. Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) D = {n people}

If Female = true? Δ = ∀y, (ParentOf(y) ⇒ MotherOf(y)) → 3n models

→ 4n models If Female = false? Δ = true

WFOMC Inference: Example

→ 3n models

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

2. Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) D = {n people}

WMC(Δ) = WMC(¬ Female ∨ ∀y, (ParentOf(y) ⇒ MotherOf(y)))

 = 2 * 2n * 2n - (2 – 1) * (2n * 2n – WMC(∀y, (ParentOf(y) ⇒ MotherOf(y))))

 = 2 * 4n – (4n – 3n)

→ 3n + 4n models

WFOMC Inference: Example

→ 3n models

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

2. Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y))

1. Δ = ∀x,y, (ParentOf(x,y) ∧ Female(x) ⇒ MotherOf(x,y)) D = {n people}

D = {n people}

WMC(Δ) = WMC(¬ Female ∨ ∀y, (ParentOf(y) ⇒ MotherOf(y)))

 = 2 * 2n * 2n - (2 – 1) * (2n * 2n – WMC(∀y, (ParentOf(y) ⇒ MotherOf(y))))

 = 2 * 4n – (4n – 3n)

→ 3n + 4n models

→ (3n + 4n)
n models

WFOMC Inference: Example

→ 3n models

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

2. Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y))

1. Δ = ∀x,y, (ParentOf(x,y) ∧ Female(x) ⇒ MotherOf(x,y)) D = {n people}

D = {n people}

WMC(Δ) = WMC(¬ Female ∨ ∀y, (ParentOf(y) ⇒ MotherOf(y)))

 = 2 * 2n * 2n - (2 – 1) * (2n * 2n – WMC(∀y, (ParentOf(y) ⇒ MotherOf(y))))

 = 2 * 4n – (4n – 3n)

→ 3n + 4n models

Atom Counting: Example

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Atom Counting: Example

 If we know precisely who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Atom Counting: Example

 If we know precisely who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Atom Counting: Example

 If we know precisely who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Atom Counting: Example

 If we know precisely who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Atom Counting: Example

 If we know precisely who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Atom Counting: Example

 If we know precisely who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Atom Counting: Example

 If we know precisely who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Atom Counting: Example

 If we know precisely who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Atom Counting: Example

 If we know precisely who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Atom Counting: Example

 If we know precisely who smokes, and there are k smokers?

k

n-k

k

n-k

→ models

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Atom Counting: Example

 If we know precisely who smokes, and there are k smokers?

k

n-k

k

n-k

 If we know that there are k smokers?

→ models

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Atom Counting: Example

 If we know precisely who smokes, and there are k smokers?

k

n-k

k

n-k

 If we know that there are k smokers?

→ models

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

→ models

Smokes Smokes Friends

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Atom Counting: Example

 If we know precisely who smokes, and there are k smokers?

k

n-k

k

n-k

 If we know that there are k smokers?

 In total…

→ models

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

→ models

Smokes Smokes Friends

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Atom Counting: Example

 If we know precisely who smokes, and there are k smokers?

k

n-k

k

n-k

 If we know that there are k smokers?

 In total…

→ models

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

→ models

→ models

Smokes Smokes Friends

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Augment Rules with Logical Rewritings

[Suciu’11]

Augment Rules with Logical Rewritings

1. Remove constants (shattering)

Δ = ∀x (Friend(Alice, x) ∨ Friend(x, Bob))

[Suciu’11]

Augment Rules with Logical Rewritings

1. Remove constants (shattering)

Δ = ∀x (Friend(Alice, x) ∨ Friend(x, Bob))

Δ = ∀x (F1(x) ∨ F2(x)) ∧ (F3 ∨ F4) ∧ (F4 ∨ F5)

F1(x) = Friend(Alice,x)

F2(x) = Friend(x,Bob)

F3 = Friend(Alice, Alice)

F4 = Friend(Alice,Bob)

F5 = Friend(Bob,Bob)

[Suciu’11]

Augment Rules with Logical Rewritings

1. Remove constants (shattering)

Δ = ∀x (Friend(Alice, x) ∨ Friend(x, Bob))

Δ = ∀x (F1(x) ∨ F2(x)) ∧ (F3 ∨ F4) ∧ (F4 ∨ F5)

F1(x) = Friend(Alice,x)

F2(x) = Friend(x,Bob)

F3 = Friend(Alice, Alice)

F4 = Friend(Alice,Bob)

F5 = Friend(Bob,Bob)

2. “Rank” variables (= occur in the same order in each atom)

Δ = (Friend(x,y) ∨ Enemy(x,y)) ∧ (Friend(x,y) ∨ Enemy(y,x)) Wrong order

[Suciu’11]

Augment Rules with Logical Rewritings

1. Remove constants (shattering)

Δ = ∀x (Friend(Alice, x) ∨ Friend(x, Bob))

Δ = ∀x (F1(x) ∨ F2(x)) ∧ (F3 ∨ F4) ∧ (F4 ∨ F5)

F1(x) = Friend(Alice,x)

F2(x) = Friend(x,Bob)

F3 = Friend(Alice, Alice)

F4 = Friend(Alice,Bob)

F5 = Friend(Bob,Bob)

2. “Rank” variables (= occur in the same order in each atom)

Δ = (Friend(x,y) ∨ Enemy(x,y)) ∧ (Friend(x,y) ∨ Enemy(y,x)) Wrong order

F1(u,v) = Friend(u,v),u<v

F2(u) = Friend(u,u)

F3(u,v) = Friend(v,u),v<u

E1(u,v) = Friend(u,v),u<v

E2(u) = Friend(u,u)

E3(u,v) = Friend(v,u),v<u

Δ = (F1(x,y) ∨ E1(x,y)) ∧ (F1(x,y) ∨ E3(x,y))

 ∧ (F2(x) ∨ E2(x))

 ∧ (F3(x,y) ∨ E3(x,y)) ∧ (F3(x,y) ∨ E1(x,y))

[Suciu’11]

Augment Rules with Logical Rewritings

3. Perform Resolution [Gribkoff’14]

Δ = ∀x∀y (R(x) ∨¬S(x,y)) ∧ ∀x∀y (S(x,y) ∨ T(y)) Rules stuck…

Add resolvent: Δ = ∀x∀y (R(x) ∨¬S(x,y)) ∧ ∀x∀y (S(x,y) ∨ T(y))

 ∧ ∀x∀y (R(x) ∨ T(y))

Now apply I/E!

Resolution on S(x,y): ∀x∀y (R(x) ∨ T(y))

Augment Rules with Logical Rewritings

4. Skolemization [VdB’14]

Δ = ∀p, ∃c, Card(p,c)

Mix ∀/∃ in encodings of MLNs with quantifiers and probabilistic programs

Input: Mix ∀/∃ Output: Only ∀

Inference rules assume one type of quantifier!

Δ = ∀x, Smokes(x)  ∃y, Friends(x,y), Smokes(y).

smokes(X) :- friends(X,Y), smokes(Y). Datalog

FOL

Skolemization

BUT: cannot introduce Skolem constants or functions! ∀p, Card(p,S(p))

Skolemization: Example

Δ = ∀p, ∃c, Card(p,c)

[VdB’14]

Skolemization

Skolemization: Example

Δ = ∀p, ∃c, Card(p,c)

Δ’ = ∀p, ∀c, Card(p,c) ⇒ S(p)

[VdB’14]

w(S) = 1 and w(¬S) = -1

Skolemization

Skolem predicate

Skolemization: Example

Δ = ∀p, ∃c, Card(p,c)

Δ’ = ∀p, ∀c, Card(p,c) ⇒ S(p)

[VdB’14]

∃c, Card(p,c) = true

Consider one position p:

w(S) = 1 and w(¬S) = -1

∃c, Card(p,c) = false

Skolemization

Skolem predicate

Skolemization: Example

Δ = ∀p, ∃c, Card(p,c)

Δ’ = ∀p, ∀c, Card(p,c) ⇒ S(p)

[VdB’14]

∃c, Card(p,c) = true

S(p) = true Also model of Δ, weight * 1

Consider one position p:

w(S) = 1 and w(¬S) = -1

∃c, Card(p,c) = false

Skolemization

Skolem predicate

Skolemization: Example

Δ = ∀p, ∃c, Card(p,c)

Δ’ = ∀p, ∀c, Card(p,c) ⇒ S(p)

[VdB’14]

∃c, Card(p,c) = true

S(p) = true Also model of Δ, weight * 1

Consider one position p:

w(S) = 1 and w(¬S) = -1

∃c, Card(p,c) = false

S(p) = true No model of Δ, weight * 1

S(p) = false No model of Δ, weight * -1

Extra models Cancel out

Skolemization

Skolem predicate

Skolemization: Example

Δ = ∀p, ∃c, Card(p,c)

Δ’ = ∀p, ∀c, Card(p,c) ⇒ S(p)

[VdB’14]

First-Order Knowledge Compilation
3.14 Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y) Markov Logic

[Vdb’11,’13]

First-Order Knowledge Compilation
3.14 Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)

∀x,y, F(x,y) ⇔ [Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)]

Weight Function

w(Smokes)=1
 w(¬Smokes)=1
 w(Friends)=1
 w(¬Friends)=1
 w(F)=exp(3.14)

 w(¬F)=1

FOL Sentence

Markov Logic

[Vdb’11,’13]

First-Order Knowledge Compilation
3.14 Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)

∀x,y, F(x,y) ⇔ [Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)]

Weight Function

w(Smokes)=1
 w(¬Smokes)=1
 w(Friends)=1
 w(¬Friends)=1
 w(F)=exp(3.14)

 w(¬F)=1

FOL Sentence

First-Order d-DNNF Circuit

Markov Logic

[Vdb’11,’13]

 Compile?

First-Order Knowledge Compilation
3.14 Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)

∀x,y, F(x,y) ⇔ [Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)]

Weight Function

w(Smokes)=1
 w(¬Smokes)=1
 w(Friends)=1
 w(¬Friends)=1
 w(F)=exp(3.14)

 w(¬F)=1

FOL Sentence

First-Order d-DNNF Circuit

Domain

Alice
Bob

Charlie Z = WFOMC = 1479.85

Markov Logic

[Vdb’11,’13]

 Compile?

First-Order Knowledge Compilation

Evaluation in time polynomial in domain size

3.14 Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)

∀x,y, F(x,y) ⇔ [Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)]

Weight Function

w(Smokes)=1
 w(¬Smokes)=1
 w(Friends)=1
 w(¬Friends)=1
 w(F)=exp(3.14)

 w(¬F)=1

FOL Sentence

First-Order d-DNNF Circuit

Domain

Alice
Bob

Charlie Z = WFOMC = 1479.85

Markov Logic

[Vdb’11,’13]

 Compile?

First-Order Knowledge Compilation

Evaluation in time polynomial in domain size Domain-lifted!

3.14 Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)

∀x,y, F(x,y) ⇔ [Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)]

Weight Function

w(Smokes)=1
 w(¬Smokes)=1
 w(Friends)=1
 w(¬Friends)=1
 w(F)=exp(3.14)

 w(¬F)=1

FOL Sentence

First-Order d-DNNF Circuit

Domain

Alice
Bob

Charlie Z = WFOMC = 1479.85

Markov Logic

[Vdb’11,’13]

 Compile?

Negation Normal Form

[Darwiche’01]

Decomposable NNF

Decomposable

[Darwiche’01]

Deterministic Decomposable NNF

Deterministic

[Darwiche’01]

Deterministic Decomposable NNF

Weighted Model Counting

[Darwiche’01]

Deterministic Decomposable NNF

Weighted Model Counting and much more!

[Darwiche’01]

First-Order NNF

[VdB’13]

First-Order Decomposability

Decomposable

[VdB’13]

First-Order Decomposability

Decomposable

[VdB’13]

First-Order Determinism

Deterministic

[VdB’13]

First-Order NNF = Query Plan

[VdB’13]

Deterministic Decomposable FO NNF

Weighted Model Counting

[VdB’13]

Deterministic Decomposable FO NNF

Pr(belgian) x Pr(likes)

+ Pr(¬belgian)

Weighted Model Counting

[VdB’13]

Deterministic Decomposable FO NNF

Pr(belgian) x Pr(likes)

+ Pr(¬belgian)

Weighted Model Counting

()
|People|

[VdB’13]

Symmetric WFOMC on FO NNF

Complexity polynomial in domain size!

Polynomial in NNF size for bounded depth.

[VdB’13]

How to do first-order

knowledge compilation?

Deterministic Decomposable FO NNF

Δ = ∀x ,y ∈ People, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y))

[VdB’13]

Deterministic Decomposable FO NNF

Δ = ∀x ,y ∈ People, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y))

[VdB’13]

Deterministic Decomposable FO NNF

Δ = ∀x ,y ∈ People, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y))

[VdB’13]

Deterministic Decomposable FO NNF

Δ = ∀x ,y ∈ People, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y))

[VdB’13]

Deterministic Decomposable FO NNF

Δ = ∀x ,y ∈ People, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y))

Deterministic

[VdB’13]

Deterministic Decomposable FO NNF

Δ = ∀x ,y ∈ People, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y))

[VdB’13]

Compilation Rules

• Standard rules

– Shannon decomposition (DPLL)

– Detect decomposability

– Etc.

• FO Shannon

decomposition:

Δ

[VdB’13]

...

Playing Cards Revisited

Let us automate this:

 Relational model

 Lifted probabilistic inference algorithm

∀p, ∃c, Card(p,c)

∀c, ∃p, Card(p,c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

Why not do propositional WMC?

Reduce to propositional model counting:

[VdB’15]

Why not do propositional WMC?

Reduce to propositional model counting:

Card(A♥,p1) v … v Card(2♣,p1)

Card(A♥,p2) v … v Card(2♣,p2)

…

Card(A♥,p1) v … v Card(A♥,p52)

Card(K♥,p1) v … v Card(K♥,p52)

…

¬Card(A♥,p1) v ¬Card(A♥,p2)

¬Card(A♥,p1) v ¬Card(A♥,p3)

…

Δ =

[VdB’15]

Why not do propositional WMC?

Reduce to propositional model counting:

Card(A♥,p1) v … v Card(2♣,p1)

Card(A♥,p2) v … v Card(2♣,p2)

…

Card(A♥,p1) v … v Card(A♥,p52)

Card(K♥,p1) v … v Card(K♥,p52)

…

¬Card(A♥,p1) v ¬Card(A♥,p2)

¬Card(A♥,p1) v ¬Card(A♥,p3)

…

Δ =

What will

happen?

[VdB’15]

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

[VdB’15]

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

Card(K♥,p52)

[VdB’15]

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

One model/perfect matching

[VdB’15]

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

[VdB’15]

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

Card(K♥,p52)

[VdB’15]

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

Card(K♥,p52)

Model counting: How many perfect matchings?

[VdB’15]

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

[VdB’15]

What if I set

w(Card(K♥,p52)) = 0?

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

What if I set

w(Card(K♥,p52)) = 0?

[VdB’15]

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

[VdB’15]

What if I set can set any

asymmetric weight function?

Observations

• Asymmetric weight function can remove edge
Encode any bigraph

• Counting models = perfect matchings

• Problem is #P-complete! 

• All non-lifted WMC solvers efficiently handle
asymmetric weights

• No solver does cards problem efficiently!

[VdB’15]

Later: Power of lifted vs. ground inference and complexities

...

Playing Cards Revisited

Let us automate this:

 Relational model

 Lifted probabilistic inference algorithm

∀p, ∃c, Card(p,c)

∀c, ∃p, Card(p,c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

Playing Cards Revisited

∀p, ∃c, Card(p,c)

∀c, ∃p, Card(p,c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

[VdB’15]

Playing Cards Revisited

∀p, ∃c, Card(p,c)

∀c, ∃p, Card(p,c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

Skolemization

[VdB’15]

∀p, ∀c, Card(p,c) ⇒ S1(p)

∀c, ∀p, Card(p,c) ⇒ S2(c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

Playing Cards Revisited

∀p, ∃c, Card(p,c)

∀c, ∃p, Card(p,c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

Skolemization

[VdB’15]

∀p, ∀c, Card(p,c) ⇒ S1(p)

∀c, ∀p, Card(p,c) ⇒ S2(c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

Playing Cards Revisited

w(S1) = 1 and w(¬S1) = -1

w(S2) = 1 and w(¬S2) = -1

∀p, ∃c, Card(p,c)

∀c, ∃p, Card(p,c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

Skolemization

[VdB’15]

∀p, ∀c, Card(p,c) ⇒ S1(p)

∀c, ∀p, Card(p,c) ⇒ S2(c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

Playing Cards Revisited

w(S1) = 1 and w(¬S1) = -1

w(S2) = 1 and w(¬S2) = -1

∀p, ∃c, Card(p,c)

∀c, ∃p, Card(p,c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

Skolemization

Atom counting

[VdB’15]

∀p, ∀c, Card(p,c) ⇒ S1(p)

∀c, ∀p, Card(p,c) ⇒ S2(c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

Playing Cards Revisited

w(S1) = 1 and w(¬S1) = -1

w(S2) = 1 and w(¬S2) = -1

∀p, ∃c, Card(p,c)

∀c, ∃p, Card(p,c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

Skolemization

Atom counting

[VdB’15]

∀p, ∀c, Card(p,c) ⇒ S1(p)

∀c, ∀p, Card(p,c) ⇒ S2(c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

Playing Cards Revisited

w(S1) = 1 and w(¬S1) = -1

w(S2) = 1 and w(¬S2) = -1

∀p, ∃c, Card(p,c)

∀c, ∃p, Card(p,c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

∀-Rule

Skolemization

Atom counting

[VdB’15]

∀p, ∀c, Card(p,c) ⇒ S1(p)

∀c, ∀p, Card(p,c) ⇒ S2(c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

Playing Cards Revisited

w(S1) = 1 and w(¬S1) = -1

w(S2) = 1 and w(¬S2) = -1

∀p, ∃c, Card(p,c)

∀c, ∃p, Card(p,c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

∀c, ∀c’, Card(c) ∧ Card(c’) ⇒ c = c’

∀-Rule

Skolemization

Atom counting

[VdB’15]

∀p, ∀c, Card(p,c) ⇒ S1(p)

∀c, ∀p, Card(p,c) ⇒ S2(c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

Playing Cards Revisited

w(S1) = 1 and w(¬S1) = -1

…

w(S2) = 1 and w(¬S2) = -1

∀p, ∃c, Card(p,c)

∀c, ∃p, Card(p,c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

∀c, ∀c’, Card(c) ∧ Card(c’) ⇒ c = c’

∀-Rule

Skolemization

Atom counting

[VdB’15]

...

Playing Cards Revisited

Let us automate this:

 Lifted probabilistic inference algorithm

Computed in time polynomial in n

[VdB’15]

Summary Lifted Inference

• By definition: PTIME data complexity

Also: ∃ FO compilation = ∃ Query Plan

• However: only works for “liftable” queries

• Preprocessing based on logical rewriting

• The rules: Deceptively simple: the only

surprising rules are I/E and atom counting

• Rules are captured by a query plan

or first-order NNF circuit

