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 Informal: 
 Exploit symmetries, Reason at first-order level, Reason about groups of objects, 

 Scalable inference, High-level probabilistic reasoning, etc. 

 A formal definition: Domain-lifted inference 

 

 

 
 

 

Defining Lifted Inference 

 Polynomial in #people, #webpages, #cards 

 Not polynomial in #predicates, #formulas, #logical variables 

 Related to data complexity in databases 

Inference runs in time polynomial 

in the number of objects in the domain. 

[VdB’11, Jaeger’12] 
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Defining Lifted Inference 

Lifted inference = ∃Query Plan = ∃FO Compilation 

 Alternative in this tutorial: 

[VdB’11, Jaeger’12] 

 



Asymmetric WFOMC Rules 
Preprocess Q (omitted from this talk; see [Suciu’11]),  

then apply these rules (some have preconditions) 

WMC(¬Δ) = Z-WMC(Δ) Negation 
Normalization constant Z 

(easy to compute) 
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Normalization constant Z 
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Asymmetric WFOMC Rules 

WMC(Δ1∧Δ2) = WMC(Δ 1) * WMC(Δ 2) 

WMC(Δ1∨Δ2) = Z -(Z1-WMC(Δ1))*(Z2-WMC(Δ2)) 

WMC(∃z Δ) = Z – ΠC∈Domain (ZC–WMC(Δ[C/z]) 

WMC(∀z Δ) = ΠC∈Domain WMC(Δ[C/z] 

WMC(Δ1∧Δ2) = WMC(Δ1)+WMC(Δ2)-WMC(Δ1∨Δ2) 

WMC(Δ1∨Δ2) = WMC(Δ1)+WMC(Δ2)-WMC(Δ1∧Δ2) 

Preprocess Q (omitted from this talk; see [Suciu’11]),  

then apply these rules (some have preconditions) 

Independent  

join / union 

Independent  

project 

Inclusion/ 

exclusion 

WMC(¬Δ) = Z-WMC(Δ) Negation 
Normalization constant Z 

(easy to compute) 



Symmetric WFOMC Rules  

• Simplification to independent project: 

 

 
If Δ[C1/x], Δ[C2/x], … are independent 

 WMC(∃z Δ) = Z – (ZC1
-WMC(Δ[C1/z])|Domain| 

 WMC(∀z Δ) =  WMC(Δ[C1/z])|Domain| 

[VdB’11] 

 



Symmetric WFOMC Rules  

• Simplification to independent project: 

 

 
If Δ[C1/x], Δ[C2/x], … are independent 

 WMC(∃z Δ) = Z – (ZC1
-WMC(Δ[C1/z])|Domain| 

 WMC(∀z Δ) =  WMC(Δ[C1/z])|Domain| 

The workhorse of 

Symmetric WFOMC 

• A powerful new inference rule: atom counting 

Only possible with symmetric weights 

Intuition: Remove unary relations 

 

[VdB’11] 

 



  
   

• FO-Model Counting: w(R) = w(¬R) = 1 

• Apply inference rules backwards (step 4-3-2-1) 

WFOMC Inference: Example 
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Augment Rules with Logical Rewritings 

1. Remove constants (shattering) 

Δ = ∀x (Friend(Alice, x) ∨ Friend(x, Bob)) 
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F2(x) = Friend(x,Bob) 
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2. “Rank” variables (= occur in the same order in each atom) 

Δ = (Friend(x,y) ∨ Enemy(x,y))   ∧    (Friend(x,y) ∨ Enemy(y,x)) Wrong order 

F1(u,v) = Friend(u,v),u<v 

F2(u)    = Friend(u,u) 

F3(u,v) = Friend(v,u),v<u 

E1(u,v) = Friend(u,v),u<v 

E2(u)    = Friend(u,u) 

E3(u,v) = Friend(v,u),v<u 

Δ = (F1(x,y) ∨ E1(x,y)) ∧ (F1(x,y) ∨ E3(x,y)) 

   ∧ (F2(x) ∨ E2(x)) 
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Augment Rules with Logical Rewritings 

3. Perform Resolution [Gribkoff’14] 

Δ = ∀x∀y (R(x) ∨¬S(x,y)) ∧ ∀x∀y (S(x,y) ∨ T(y))   Rules stuck… 

Add resolvent:  Δ = ∀x∀y (R(x) ∨¬S(x,y)) ∧ ∀x∀y (S(x,y) ∨ T(y))   

   ∧ ∀x∀y (R(x) ∨ T(y))   

Now apply I/E! 

Resolution on S(x,y):  ∀x∀y (R(x) ∨ T(y))   



Augment Rules with Logical Rewritings 

4. Skolemization [VdB’14] 

Δ = ∀p, ∃c, Card(p,c) 

Mix ∀/∃ in encodings of  MLNs with quantifiers and probabilistic programs 

Input: Mix ∀/∃             Output: Only ∀ 

Inference rules assume one type of quantifier! 

Δ = ∀x, Smokes(x)  ∃y, Friends(x,y), Smokes(y). 

smokes(X) :- friends(X,Y), smokes(Y). Datalog 

FOL 

Skolemization 

BUT: cannot introduce Skolem constants or functions! ∀p, Card(p,S(p)) 



Skolemization: Example 

Δ = ∀p, ∃c, Card(p,c) 

[VdB’14] 
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Skolemization: Example 

Δ = ∀p, ∃c, Card(p,c) 

Δ’ = ∀p, ∀c, Card(p,c) ⇒ S(p) 

[VdB’14] 



w(S) = 1   and   w(¬S) = -1 

Skolemization 

Skolem predicate 

Skolemization: Example 

Δ = ∀p, ∃c, Card(p,c) 

Δ’ = ∀p, ∀c, Card(p,c) ⇒ S(p) 

[VdB’14] 



∃c, Card(p,c) = true 

Consider one position p: 

w(S) = 1   and   w(¬S) = -1 
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∃c, Card(p,c) = true 

S(p) = true Also model of Δ, weight  * 1 

Consider one position p: 

w(S) = 1   and   w(¬S) = -1 
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S(p) = true No model of Δ,   weight  * 1 

S(p) = false No model of Δ,   weight  * -1 
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 w(¬Friends )=1 
 w(F)=exp(3.14) 

 w(¬F)=1 

FOL Sentence 

First-Order d-DNNF Circuit 

Domain 

Alice 
Bob 

Charlie Z = WFOMC = 1479.85 

Markov Logic 
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First-Order Knowledge Compilation 

Evaluation in time polynomial in domain size Domain-lifted! 

3.14    Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y) 

∀x,y, F(x,y) ⇔ [ Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y) ] 

Weight Function 

w(Smokes)=1 
 w(¬Smokes )=1 
   w(Friends )=1 
 w(¬Friends )=1 
 w(F)=exp(3.14) 

 w(¬F)=1 

FOL Sentence 

First-Order d-DNNF Circuit 

Domain 

Alice 
Bob 

Charlie Z = WFOMC = 1479.85 

Markov Logic 
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Negation Normal Form 

[Darwiche’01] 



Decomposable NNF 

Decomposable 

[Darwiche’01] 



Deterministic Decomposable NNF 

Deterministic 

[Darwiche’01] 



Deterministic Decomposable NNF 

Weighted Model Counting 

[Darwiche’01] 



Deterministic Decomposable NNF 

Weighted Model Counting and much more! 

[Darwiche’01] 



First-Order NNF 

[VdB’13] 



First-Order Decomposability 

Decomposable 
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First-Order Decomposability 

Decomposable 
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First-Order Determinism 

Deterministic 

[VdB’13] 



First-Order NNF = Query Plan 

[VdB’13] 



Deterministic Decomposable FO NNF 

Weighted Model Counting 

[VdB’13] 



Deterministic Decomposable FO NNF 

Pr(belgian) x Pr(likes)  

+ Pr(¬belgian)  

Weighted Model Counting 

[VdB’13] 



Deterministic Decomposable FO NNF 

Pr(belgian) x Pr(likes)  

+ Pr(¬belgian)  

Weighted Model Counting 

( ) 
|People| 

[VdB’13] 



Symmetric WFOMC on FO NNF 

Complexity polynomial in domain size! 

Polynomial in NNF size for bounded depth. 

[VdB’13] 



How to do first-order  

knowledge compilation? 



Deterministic Decomposable FO NNF 

Δ = ∀x ,y ∈ People, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) 
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Deterministic Decomposable FO NNF 
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Deterministic Decomposable FO NNF 

Δ = ∀x ,y ∈ People, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) 

Deterministic 
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Deterministic Decomposable FO NNF 

Δ = ∀x ,y ∈ People, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) 

[VdB’13] 



Compilation Rules 

• Standard rules 

– Shannon decomposition (DPLL) 

– Detect decomposability 

– Etc. 

• FO Shannon  

decomposition: 

Δ 

[VdB’13] 



... 

Playing Cards Revisited 

Let us automate this: 

 Relational model 

 

 

 

 

 Lifted probabilistic inference algorithm 

∀p, ∃c, Card(p,c) 

∀c, ∃p, Card(p,c)  

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 



Why not do propositional WMC? 

Reduce to propositional model counting: 

 

 

 

 

[VdB’15] 



Why not do propositional WMC? 

Reduce to propositional model counting: 

 

 

 

 

Card(A♥,p1) v … v Card(2♣,p1) 

Card(A♥,p2) v … v Card(2♣,p2) 

… 

Card(A♥,p1) v … v Card(A♥,p52) 

Card(K♥,p1) v … v Card(K♥,p52) 

…  

¬Card(A♥,p1) v ¬Card(A♥,p2)  

¬Card(A♥,p1) v ¬Card(A♥,p3) 

… 

Δ =  

[VdB’15] 



Why not do propositional WMC? 

Reduce to propositional model counting: 

 

 

 

 

Card(A♥,p1) v … v Card(2♣,p1) 

Card(A♥,p2) v … v Card(2♣,p2) 

… 

Card(A♥,p1) v … v Card(A♥,p52) 

Card(K♥,p1) v … v Card(K♥,p52) 

…  

¬Card(A♥,p1) v ¬Card(A♥,p2)  

¬Card(A♥,p1) v ¬Card(A♥,p3) 

… 

Δ =  

What will 

happen? 

[VdB’15] 



Deck of Cards Graphically 

K♥ 

A♥ 

2♥ 

3♥ 

…
 

…
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Deck of Cards Graphically 

K♥ 

A♥ 

2♥ 

3♥ 

…
 

…
 

Card(K♥,p52) 
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Deck of Cards Graphically 

K♥ 

A♥ 

2♥ 

3♥ 

…
 

…
 

One model/perfect matching 
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Deck of Cards Graphically 

K♥ 

A♥ 

2♥ 

3♥ 

…
 

…
 

Card(K♥,p52) 
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Deck of Cards Graphically 

K♥ 

A♥ 

2♥ 

3♥ 

…
 

…
 

Card(K♥,p52) 

Model counting: How many perfect matchings? 

[VdB’15] 



Deck of Cards Graphically 

K♥ 

A♥ 

2♥ 

3♥ 

…
 

…
 

[VdB’15] 

What if I set  

w(Card(K♥,p52)) = 0? 



Deck of Cards Graphically 

K♥ 

A♥ 

2♥ 

3♥ 

…
 

…
 

What if I set  

w(Card(K♥,p52)) = 0? 

[VdB’15] 



Deck of Cards Graphically 

K♥ 

A♥ 

2♥ 

3♥ 

…
 

…
 

[VdB’15] 

What if I set can set any  

asymmetric weight function? 



Observations 

• Asymmetric weight function can remove edge 
Encode any bigraph 

 

• Counting models = perfect matchings 

• Problem is #P-complete!  

 

• All non-lifted WMC solvers efficiently handle 
asymmetric weights 

• No solver does cards problem efficiently! 

[VdB’15] 

Later: Power of lifted vs. ground inference and complexities 



... 

Playing Cards Revisited 

Let us automate this: 

 Relational model 

 

 

 

 

 Lifted probabilistic inference algorithm 

∀p, ∃c, Card(p,c) 

∀c, ∃p, Card(p,c)  

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 



Playing Cards Revisited 

∀p, ∃c, Card(p,c) 

∀c, ∃p, Card(p,c)  

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 
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Playing Cards Revisited 

∀p, ∃c, Card(p,c) 

∀c, ∃p, Card(p,c)  

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

Skolemization 

[VdB’15] 



∀p, ∀c, Card(p,c) ⇒ S1(p) 

∀c, ∀p, Card(p,c) ⇒ S2(c) 

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

Playing Cards Revisited 

∀p, ∃c, Card(p,c) 

∀c, ∃p, Card(p,c)  

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

Skolemization 
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∀p, ∀c, Card(p,c) ⇒ S1(p) 

∀c, ∀p, Card(p,c) ⇒ S2(c) 

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

Playing Cards Revisited 

w(S1) =  1 and w(¬S1) = -1 

w(S2) =  1 and w(¬S2) = -1 

∀p, ∃c, Card(p,c) 

∀c, ∃p, Card(p,c)  

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

Skolemization 
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∀p, ∃c, Card(p,c) 

∀c, ∃p, Card(p,c)  

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

Skolemization 

Atom counting 
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Atom counting 
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∀p, ∀c, Card(p,c) ⇒ S1(p) 

∀c, ∀p, Card(p,c) ⇒ S2(c) 

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

Playing Cards Revisited 

w(S1) =  1 and w(¬S1) = -1 

… 

w(S2) =  1 and w(¬S2) = -1 

∀p, ∃c, Card(p,c) 

∀c, ∃p, Card(p,c)  

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

∀c, ∀c’, Card(c) ∧ Card(c’) ⇒ c = c’ 

∀-Rule 

Skolemization 

Atom counting 
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... 

Playing Cards Revisited 

Let us automate this: 

 Lifted probabilistic inference algorithm 

Computed in time polynomial in n 

[VdB’15] 



Summary Lifted Inference 

• By definition: PTIME data complexity 

Also: ∃ FO compilation = ∃ Query Plan 

• However: only works for “liftable” queries 

• Preprocessing based on logical rewriting 

• The rules: Deceptively simple: the only 

surprising rules are I/E and atom counting 

• Rules are captured by a query plan  

or first-order NNF circuit 

 


